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ABSTRACT

The electromagnetic fields generated by a beam inside a toroidal beam pipe are
derived. Special attention has been given to the resonances developed. The effective
impedance seen by the beam is computed and the effects of displacing the beam away
the beam pipe center are considered. Applications are made to the SSC and the

TEVATRON.



I. INTRODUCTION

All the propagating waves in a straight beam pipe have phase velocities larger
than ¢, the velocity of light. As a result, the particle beam can never catch up with-
them and no resonance can occur. The situation of a curved toroidal beam pipe is
quite different. The wave with a particular azimuthal harmonic n travels with different
velocities depending on the distance from the center of the toroidal ring. For example,
if the beam travels with velocity fc at a toroidal radius R, the electromagnetic wave
traveling with the beam will have a velocity rf8c¢/R at a radius r. If this velocity
reaches ¢, this electromagnetic wave can also propagate. The condition for this to
happen is therefore

R.5

R
where R, is the radius of the outer edge of the beam pipe. Under this situation,
the electromagnetic wave generated by the beam interacts with the beam. In other
words, a resonance occurs and the beam sees an impedance. This problem has been
studied by Laslett-Lewish! and Faltens-Laslett.? Our approach, way of solution, and
interpretation on the impedance seen are different from theirs. Our first attack on
this problem was done in 1980 when longitudinal coupling impedance for the Energy-
Doubler (or the TEVATRON) was examined,® but no detailed report was written at
that time.

The main concern here is the SSC. We want to investigate whether these reso-
nances will affect the stability of the beam. The SSC main ring has a mean ring
radius of 13200.95 m and a beam pipe radius of b = 1.5 cm. If the beam is at the
center of the beam pipe, resonance can occur when the relativistic 4 > 663 according
to criterion {1.1). Therefore we expect the beam to meet these resonances for the
whole acceleration and storage cycle.

For a wave that can ‘propagate’ inside a beam pipe of cross-sectional size b, the
wavelength must be less than or of the order of b or the azimuthal harmonic must be
bigger than the cutoff harmonic given by

>1, (1.1)

Py = O (}-:-) , (1.2)

where 27 R is the length of the particle orbit. For the toroidal beam pipe, in order
that the particle beam can catch up with the resonant wave, the condition is more
restrictive, because boundary conditions have to be met in all three directions. The
propagating electromagnetic wave, which has to travel with velocity ¢ or bigger, is
confined mainly to a small region near the outer edge of the beamn pipe. Therefore,
the wavelength will be much less than b. As it turns out in Section III, these resonant



waves have a lowest azimuthal harmonic n;; given by
ny =0 (ni({?) ) (1.3)

For a machine such as the SSC which has a large ring radius and a very narrow
beam pipe radius, the cutoff harmonic ne, = 2.12 x 10° is very big. Thus the lowest
resonant toroidal harmonic ny; ~ O(10°) is very much larger than n.,. The effective
impedance per unit harmonic of this lowest mode seen by the beam turns out to be
0.36 2 at ~ 20 TeV. But the SSC bunch has a rms length of o, = 7 cm or a spectrum
extending to a rms harmonic of only 1.89 x 10°. Therefore these toroidal resonances
should have negligible effect on the single bunch mode stability. This impedance can
still drive a microwave growth, however. But this growth will be damped completely
by the designed momentum spread of the beam. On the other hand, the story can
be quite different for a small storage ring with a large beam pipe radius, because ne,
will be small and the lowest toroidal resonant harmonics may not be larger than ne
by very much.

In Section II, the fields excited by the particle beam in the toroidal beam pipe
are computed by assuming perfectly conducting pipe wall. In Section III, we pick
out the resonances and compute the resonant harmonics. The SSC main ring is used
as an example. The figures of merit @ and the shunt impedances Zy, of some lower
resonant modes are derived in Section I'V using the usual perturbative method by the
introduction of a finite wall conductivity. In Section V, the effective impedance seen
by the beam is computed. Finally in Section VI, the application is extended to the
SSC booster rings and the TEVATRON.

II. THE FIELDS IN A TOROIDAIL BEAM PIPE
IT1.1 The model

We shall use the Gaussian units except when specified otherwise. To simplify
the mathematics, we consider a toroidal beam pipe with a rectangular cross section:
width 2b and height h as shown in Fig. 1. Consider a beam in the mid-plane at a
radius R, having a single azimuthal harmonic n, traveling at a single velocity Be, and
having an angular phase frequency w. The charge density is

p(r,8,2) = A 8(2)6(r — R)ei(ng - wt) , (2.1)

where A, is the line charge density and a cyclindrical coordinate has been used (see
Fig. 1). The current density has only a #-component,

To(r,8, 2) = Anfcs(2)6(r — R)et (P8 —wi) (2.2)



Continuity requires w = nwy = nfc/ R, where wy/2n is the revolution frequency of
the beam particles.

Because a cylindrical coordinate has been chosen, it 1s most convenient to solve
first for electric and magnetic fields along the z-direction, E, and H,, which satisfy

+2) (5) -

everywhere inside the beam pipe except at the beam itself. The transverse (to z)
fields E£; and H; can then be obtained from

- £t c? - O, ic -~ .

215 ) = G5 - Soocem.

L[\ o OH, e .
.Ht (1 —_ "'(;'2- = ;-Evt"-a-;— — -L:vt X ZEZ . (24)

In above, we have assumed the time-dependence e and the z-dependence sinéz or
cosz.

I1.2 TM modes with perfectly conducting walls

We want to solve for the electromagnetic fields excited by the beam specified by
Egs. (2.1} and (2.2). Then all the flelds must have exp[i(nf — wt)] behavior with
w = nwp = nfec/R. Solving Eq. (2.3), we can obtain the TM mode by letting 4, =0
and

B.(r,8,2,t) = +a:M Z,(qir) cos &; (g T z) z z 0, (2.5)

where the ¢ and ¢ dependence has been suppressed. In above, cos ft(% F z) is chosen

because Ey and E, ~ JE,/0z will be ~ sin {,(g‘- F z) which vanishes at the upper

and lower walls. The signs before the coefficient afM are so chosen that E, will be
odd in z as required. The radial wave is

Zu(qir) = Ya(g:il2-) Tu(gir) ~ Ju(@:R-)Yalgir) (2:6)

where J, and Y, are respectively the Bessel function and Neumann function of order
n. Note that Z,, which is proportional to E., has been constructed to vanish at the
inner radius R_ of the toroidal beam pipe. In order that it will vanish at tlie outer
radius ., we set ¢; R, equal to the i-th zero of Z,(z). From the wave equation (2.3),
& can then be determined by

2
= (%) - .7



We would like the reader to pay special attention to the teminology used here. The
TM and TE imply transverse to the vertical or z-direction but not the usual beam
direction.
Next, we need to determine the coefficient a!™. Before doing so, we must derive
the orthonormal relation for Z,(g;r). Since Z,(g;r) satisfies
2
r et + (2 -%) 2utan =0, (2.8

we have for ¢ # 7,
2 ay [T
(g —qj)fR rdrZ.(¢:)2.(g;)

- M {zn(q,-r)a_ﬁ [rgirzn(qu)] - Zu(ar) o [r%zn(w)] }
Ry

bl (2-9)

0 o
= an(q,-r)EZn(qu) - ’-"Zn(qj:?")a—rzn(fi’ﬂ‘)
R_

which vanishes for either the Dirichlet or Neumann boundary condition, indicating
the orthogonality of Z,(gr). For the normalization, let us take the derivative of
Eq. (2.9) with respect to ¢; and then let ¢; — ¢; before putting in the limits Ry. We
get, after making use of Eq. (2.8),

Ry
2q1-f rdr Z2(gr)
R_
2 712 AT s
= ar'22en) +a (- ) 2 (2.10)
: R_
The resulting orthonormal condition can be written as
R _
]R ' rdr Zo(qir) Zn{gqjr) = &; ROATMTE (2.11)

where for the Dirichlet problem or TM modes, the dimensionless normalization con-
stant 1s

1 [R? R?
T™ + 712 - rzt2 R
M — | =227, — = R 2.12
and for the Neumann problem or TE modes,
1 R? n? - R? n? -
TE _ oI+ _ 2¢ 2= _ _ 2¢ . 9
N 55 [(R2 q?Rz) ZAqRy) (Rz Q?Rz) Zn(qu_)] . (2.13)
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In above, R = (R4 +R_) 1s the average radius of the toroidal beam pipe, b =
%(R+—R,) is tHhe half width of the beam pipe, and 7 = b/R. Note that in Eq. {2.13)
we have used Z, defined by Eq. (2.23) below as the radial wavefunction because it
satisfies the Neumann boundary condition. If we define a dimensionless radial variable
z by

r=R(1+nz), (2.14)

Eq. (2.11) that defines the dimensionless normalization constants N, "™® can be

rewritten as

+1
[ da(1 4+ na) 22y = N
1

/ :l dz(1 + nz)F%z) = NP | (2.15)

The Bessel functions of order n are complete in the r-space, and with the aid of the
orthonormal relation, we can write

o0 1 Rg
> AT Zn{gir)Zn(gi R} = %5(7" - R). (2.16)
1=1 1

The discontinuity of E, across z = 0 in Eq. (2.5) is related to the charge density
of Eq. (2.1) by Gauss’s law, which implies

> 2aMZ,(gir) cos %—}E =4n X, 6(r — R) . (2.17)
i=1

Substituting Eq. (2.16) in Eq. (2.17), we get

2r A RZ.(q:R)
™o — . 2.
Y T RN cos R )2 (2.18)
Finally, we obtain for the TM modes,
R & Zuar)ZalaR)eos&(3F2)
A, z,1) = Ap—= s .
E.(r,8,z,t) = £2r yE ;:0 AT Y zz 0 (2.19)

where again the factor exp(—in{# — wg)] has been suppressed. The transverse fields
can be obtained easily with the help of Eq. (2.4). Note that Eq. (2.19) will blow up
when cos&:h/2 = 0. We will discuss this in Section III.



I1.3 TE modes with perfectly conducting walls

The TE modes require E, = 0. Solving Eq. (2.3), we obtain

h
H.(r,0,2,1) =ar®Z (qtr)smf,( F z) 220, (2.20)

so that H, vanishes at the upper and lower walls and is continuous across z = 0.

Again the factor exp[—in(é — wp] has been suppressed. Here, £; is again given by
n2ﬁ2

through Eq. (2.3). However, ¢; is not the same as that for the TM mode; it is

determined from the boundary conditions of the radial magnetic field gotten from

Eq. (2.4),

TE 6;

H(r,8,2,t) = F—27"(gr) cos Ez( ) z 2 0. (2.22)

The radial magnetic field must vanish at r = Ry. Therefore, we choose
Zo(air) = (@R )Tnlgir) — Tn(iR-)Yalair) (2.23)

with ¢ Ry equal to the i-th zero of Z/(z). Equation (2.4) implies E, « H, and Ej

Z!(gr)sin f,( F z). So the transverse electric field satisfies the required boundary
conditions at the walls. The strength of excitation a]¥ can be obtained from Ampere’s
law. Equating the discontinuity of H, in Eq. (2.22) and the beam current in Eq. (2.2),
we get

o0 TE 4
Z— &Z {gir cos—&—— = —EfJgdz
=1 qi C

= 4nX.G8(r - R) . (2.24)

We have shown that Z,(g;r), being a linear combination of Bessel functions satisfying
the Neumann boundary condition, obeys an orthogonality relation,

Ry o .
/R * Zr) 2 (qgsr)rdr =0 i 7. (2.25)

Differentiating with respect to ¢; and g;, we get

f}i ZHgr) 2 (gr)ydr =0 i #7 . (2.26)



We can therefore write
Ry . - o~
/R " Zi(an) Zi(gr)rtdr = 6, RN (2.27)

where N; is some dimensionless function of ¢; R and ¢;b. The strength al® in Eq. (2.24)
can now be solved easily, and the TE magnetic field in the z-direction in Eq. {2.19)
can be written as

oo R3 7 (a2 (. R)SIn&i (2 F 2
H.(r0,2,1) = g_Ew)\g%?R Zn(Q‘a?'jén(QaR) cis(gjh:/lzz ) 2 z 0. (2.28)
Again there is a blowup if cos£;h/2 = 0.
ITII. RESONANCES
IT1.1 The resonant waves
We know that £; is obtained from
E?=i§2—ﬂ, (3.1)

where ¢; Ry is the i-th zero of Z,(z) for the TM modes or the i-th zero for the TE
modes. Whenever
w2k —1)
=T
cos§;h/2 = 0 and one wave in the summation (2.19) or (2.28) goes to infinity. This is
a resonant mode. The infinity comes in because we have treated the beam-pipe wall
as perfectly conducting.

Let us examine this particular mode. Substituting Eq. (3.2) in Eq. (2.5) the TM
E. becomes

k=12 -, (3.2)

72k — 1)z
h

for all 2. Now E, is analytic across z = 0. In fact, this represents a wave in the
empty beam pipe moving with the same angular velocity and has the same azimuthal
variation as the beam. In other words, it is the solution of the homogeneous Maxwell’s
equations but with the same 8 and t dependence as the beam. This implies that this
wave can propagate by itself in the toroidal beam pipe without the presence of the
beam. With the presence of the beam, this wave will interact with the beam because
it has the same 8 and ¢ dependence. Therefore a resonance will be established.

E.(r,8,2,1) = —a]™Z,(g;r)sin (3.3)



Similar remarks can be made for the TE modes. With £ given by Eq. (3.2), the
magnetic field in Eqs. (2.20) and (2.22) is analytic across z = 0, and the electromag-
netic flelds form a solution for the homogeneous Maxwell’s equations.

Given an : and a k, this resonant wave exists only for the harmonic n that satisfies

. n2B% r2(2% — 1)

Z{giRy) =0 and ¢ = 77 3 (3.4)
for the TM modes, and
2 92 2007 __ 132
Zi(@Ry) =0 and ¢f=7o g rek-1) (3.5)

R2 k2

for the TE mode. Therefore, for these resonant modes, we should write £, instead of
&:, and the resonant azimuthal harmonic, the solution of Eq. (3.4) or (3.5), should be
denoted by ng.

I11.2 Solutions for resonant harmonics

In this section, we try to solve Eq. (3.4) for the TM modes and Eq. (3.5) for the
TE modes. The problem is complicated because the harmonic n which we are solving
for 1s the order of the Bessel functions in Z,, or Z’n and it also resides in the argument
of Z, or Z, through ¢. Observing that n should be much bigger than the cutoff
harmonic ne, ~ Rf/b or R/h, we can expand ¢; Ry as

P e

R? h? R
2,2(01, _ 132
o fpate 1 B2k -1)
R 242 2n?h?
n[l+ny — qf
= nz, (3.6)
where
by =Ry — R. (3.7)
The other two quantities, defined as
by 1 R*rx(2k — 1)*
=g o= 2y + 2T hE (3.8)

are much smaller than unity. So ¢; Ry is always very near to n, or z = ¢; s /n is very
close to unity. Thus, the Bessel functions can be expressed in terms of Airy functions



or their derivatives:

Jo(nz) [ i

a¢ Y Bi(n?? 1
Yolnz) = _(1_422) (;1/30 ('_/_>

a¢ \M* Ain¥3¢) 1
(25) “aerol)

o 2 (1= 2\ AV | (1)
minz) o= T \ 4¢ ) n2/3 YA\ nis)
, 2 (1-22\"" B (r?¥3¢) 1
Yi(nz) = - ( © ) SR+ 0 (n—/) , (3.9)
where -
2032 = 1n1—+—— VI-2 A7 s<1
i (3.10)
%(_C)i’»/? = V221~ cos"lé 2>1.
Since z £ 1, we find
¢ =231 = 2) + O(|1 — =*?) . (3.11)
Therefore, comparing with Eq. (3.6), we have
(= =2"%(aF ) (3.12)
where the subseript + corresponds to ¢; .
Now in terms of Airy functions, Eqgs. (3.4) and (3.5) transform into,
TM : Ai(~y)Bi(z) ~ Ai(z)Bi(~y) =0, {3.13)
TE : AY(—y)BY(z) — A¥'(2)Bi'(—y) =0, (3.14)
with
z = 2323y + )
(3.15)
y =20 (ny — 0} .
Equations (3.13) and (3.14) can be rewritten as,
Ai(z)  Ai(—-y)
™ : = 3.
M Bi(z) ~ Bi(~y) ’ (3.16)
TE : Al(z) _ Ai(-y) (3.17)

Bi(2) ~ Bi(-y)



We see from Fig. 2 that, when z > 0, Ai(z)/Bi(z) and Ai'(z)/Bi'(z) are monotonic
and decay to zero exponentially. Thus Eq. (3.16) or Eq. (3.17) will have no solution
if both =z and —y are positive aside from the trivial one x = y = 0. Since z is positive
[Eq. (3.15)], to arrive at a solution, we must have y positive or n, > a. Note that this
condition is equivalent to criterion (1.1), because at the limit of the criterion nlM
ni¥ goes to infinity (see below) and the second term of « in Eq. (3.8) vanishes. Under
this situation, the left sides of Eqgs. (3.16) are exponentially decaying, but the right
sides are monotonically increasing and resemble the tangent curves having zeros and
reaching +oo. Since

or

T -t
4 T+«

when the right sides of Eq. (3.16) and Eq. (3.17) reach their respective zeroes, the left
sides have already decayed to zero practically. Thus, to a high degree of accuracy, the
solutions are (see Fig. 2):

>1, (3.18)

TM : Ai{(—y) =0, (3.19)
TE : Ai'(—y)=0. (3.20)
Therefore the resonant harmonics are given by
gy |ty 1 WImE-17) )Y o (3.21)
LR 292 2nfh? ! TE.

where —y; and —y. are respectively the ith zeroes if Ai(—y) and Ai'(—y), the first few
of which are listed in Table I. Since Ai(—y) starts off positive at y = 0 and Ai'(~y)

TM modes | TE modes
Yy = 2.3381 | y; = 1.0188
Y2 = 4.0879 | y5 = 3.2482
ys = 5.5205 | y3 = 4.8201
ys = 6.7867 | v, = 6.1633
ys = 7.9441 | y! = 7.3722
ye = 9.0227 | y5 = 8.4885

Table I: Zeroes of Ai(—y} and Ai'(—y).
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starts off negative at y = 0, it is obvious that the lowest resonant wave is a TE mode.
In most cases, ng > (R3/bh?)Y/? ~ n2/2 the last term on the left side of Eq. (3.21)

can be neglected, and the solution can then be simplified to

R.p [ 1Hw27Pngit IM (3.22)
R 1+ y52_1/3ni—k2/3 TE .
The lowest mode is R,
Tﬁ = 1+ 0.8086n7"* (3.23)

which is the first TE mode. This 1s the formula given by Faltens and Laslett.? With the
beam roughly at the center of the beam pipe, R ~ R, this lowest resonant harmonic
reduces to
£\%? o2
n1k~1375(b) =0 (n?) . (3.24)

Note that formula (3.22) may not be accurate for the lowest modes.

For the SSC, if we take b = h/2 = 1.5 ¢m, R = 13200.95 m, the lowest TM and
TE resonant harmonics at 20 TeV (v = 20,000 has been used) are respectively

nit = 257 x 10°
nit = 1.40x 10°, (3.25)

which differ by quite a bit from the results of the approximate formulas (3.22), nTM =

2.09 x 10° and n{f = 6.01 x 10®, although the orders of magnitude are correct.

The field distributions in the radial direction are plotted in Figs. 3 and 4 respec-
tively for the lowest TM and TE modes. We see that the fields are always concentrated
in a region between the beam and the outer edge of the beam pipe, where the linear
velocity can be larger than ¢. Therefore, the wavelength should be much less than
the size of the pipe. As v decreases, the resonant fields are pushed more and more
towards the outer edge of the pipe in order to attain the velocity of light. As a result
the wavelength decreases or the resonant azimuthal harmonic n51 or nlf increases.
When the beam velocity drops to the limit of criterion (1.1), the available region for
propagation inside the pipe is squeezed to zero and niM or nfF will be pushed to.
infinity. For this reason, Faltens- Laslett s formula (3.22) will be accurate only at low
beam momenta when nTM or n]F is large enough so that the third term in Eq. (3.21)
can be neglected.

Harmonics of other modes are tabulated in Table II. For comparison, the cutoff
harmonics for this rectangular beam pipe are nT™ = 1.95 x 10® and nIE = 1.38 x 108,

and the the revolution frequency is 3.61 kHz. However, for these cutoff harmonics
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the TM and TE imply transverse to the beam direction, which are different from the
TM and TE defined in this paper. The cutoff harmonic for a circular beam pipe of
radius 1.5 cm is ne, = 2.12 x 108.

IV. MODEL WITH FINITE WALL CONDUCTIVITY
IV.1 Figure of merit

If we introduce a finite wall conductivity o, each resonance will no longer be infinite
and has a finite width. The sharpness of the resonance is described by the figure of
merit @QIM or QEE, which can be estimated from the volume and surface area of the

beam-pipe cavity

2  volume (4.1)

Q~ 2 _toume
$ surface area

where é 1s the skin.depth into the pipe wall. For our rectangular toroidal beam pipe,
this estimate becomes (in mks units)

Zona  2bh
D~V R A
where Zy = 377 ) is the impedance of free space. Taking copper at 4°K or ¢ =
1.80 x 10° (£2-m)™~*, we get @ ~ 76.0y/n. Therefore the lowest resonance at ~ 20 TeV
has QfF ~ 2.84 x 10° or a FWHM spread of AnJF = nIF/QTE ~ 492.
A more accurate definition of @ is 27 times the ratio of the time-averaged energy
stored to the energy loss per cycle. The power lost to the wall is

(4.2)

- c]1 — .
P = [§]§£Euxﬂa-nd5‘

_ c 5u,wa¢u'c b N T ~
- [ 4W] Selle § (i, x 7). (Hy x 2)dS

6awa;uc r7
- fede jﬂ |5, [%ds | (4.3)

where the subscript a stands for the resonance ik of either the TM or TE mode,
fte ~ 1 is the relative magnetic permeability of the pipe wall, and the integrals are
carried over the walls of the beam pipe. In writing down Eq. (4.3), we have made the
approximation that the resonances are widely separated.

We next normalized the electric and magnetic fields of mode a by letting

—

E, = eaé; y ﬁa = haﬁa 3 (4'4)

so that the volume integrals

jéf|é;|2dv = @ﬁaﬁdv =1. (4.5)
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Here e, and h, represent the strengths of the excitation and they are related. For
example, if we take the absolute value squared of Faraday’s law,

eay X &, = %haﬁa , (4.6)

and integrate over the whole volume of the cavity, with the help of Eqs. (2.3) and
(4.5}, it is easy to find |e,| = |h;| in the Gaussian units. Note that we can still have
an arbitrary choice of relative phase.

The energy stored in the toroidal ring in this mode is

1 2 1 2
= — = —1lh.0°. 4.
u= gleal = o IRl (4.7)
The figure of merit is therefore by definition,
2 1
(4.8)

a #caa-{ig'ﬁalzds .

For the (ik)-th TM mode, using Egs. (3.3) and (2.4), the normalized fields are

¢R .
(Eik)e = — Z.(gir)sin£xz
ThaNiVnRp (ar)sin

R
(Ea)r = L 24 (qir) cos 6z |

ThnNiMn RS

xR Zn(giT)

(Eix)e = — cosrz
T NMG R T )

(Hie)r = - - Znlair) sin 2
JrhnNiMgR T
2
(Hir)o = ——=——===2Z,(gr)sinz, 4.9
nhapNIMR ¢ (+9)

where & = n(2k — 1)/h, NIM is given by Eq. (2.12), and n = n}M is the resonant
harmonic. Again, the 8 and ¢ dependences have been suppressed. Then,

v 4 2 (Ry/R)ZHgiRy)+ (R /R)Z}(g:R-)
HaPas =212 - . . 4.10
o Rl dS = 5 4 B Ry ity (R RV 20 ) (410
Note that the second term, the contribution at the inner and outer curved surface, is
very much less than the first term. Thus

h
IM oy 4.11
Qlk 25“‘. bl ( )
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which is close to our estimate of (4.2).
For the (i%)-th TE mode, the normalized fields are

,-R
(Hix): = g Zn(qir) cos &z
rhyNJEnRA
(Hig)r = — EkR — zé(q,-r) sin £xz
\/whn./\/};EnRﬁ
(Hix)o = ik Zn(air) sin &z
ik
(Er)r = = = _ Zular) cos iz
JrNIEGR T
(Ex)e = Sy Z_N’TERZ;;(%T) cos {2 (4.12)
AN i3

where £, = n(2k — 1)/h, N3ZE is given by Eq. (2.13), and n = nlF is the resonant
harmonic. Then,

fs (Hi|2dS =
€ [ Rh [(n @R\ s | gR.
n?ﬁ?nq%h{4ME [(Rﬁ' = )Z“(Q‘R““”(R* ") el
+nq,R2} (4.13)

Note that ¢;R ~ ¢; Ry ~ n and R ~ ng,. For the two terms n?/Ry and ¢!R. /€2,
the ratio is

n*t} Neo \ 2
~ [ — 1 4.14
g~ () <1, (#:14)

so that the n?/Ry terms can be neglected. The last term is

4R 4 fn,\? 4
n2Bh  h ( n ) <EH- (4.15)

Thus the main contribution comes from the g; Ri/ £ terms which give roughly

2|2,
f |H‘k|2ds o 3' |beam , (416)
and therefore
* 'k |Z rbeam ‘

which turns out to give roughly the order of magnitude as Eq. (4.2).
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IV.2 Shunt impedance

We first compute the amount of fields of the a-th mode, e, or h, in Eq. (4.4)
excited by the beam by assuming a power loss in the pipe walls. Then the shunt
immpedance can be inferred.

From Eqs. (4.3) and (4.8), the average power lost to the pipe wall for mode a is

= 11 w

j [—— e

2Q,

The power loss can also be computed by the azimuthal electric field (&), seen by the
beam current J

he|? . (4.18)

-1
P=se j((gg)ar*de . (4.19)
Equating Eqgs. (4.18) and (4.19) and recalling that |e,| = |k,|, we get
e = ‘MQG <2 fen.rat. (4.20)

Denoting the ‘voltage’ dropped per unit current by

B f (E)aI"de

4.21

and substituting e} into Eq. (4.19), the average power loss becomes

= 2n@}

P = aIII |Bal? - (4.22)
Therefore the shunt impedance or the 1mpedance at w, 1s

47,

Ty = Q |¢a|2 (4.23)

In mks units, this is
CQC'- 2 5
Zsh = ZD |¢a| (4“4)

Thus what we need to compute is ¢, deﬁned in Eq. (4.21) which is just the integral
of (&s). along the beam orbit. Using the explicit expressions given in Eqs. (4.9) and -
{4.12), we obtain

4nRE? | Z, |
a a eaIm TNI
T | (4.25)
= B 4.25
’ 4WR |dZﬂa/dx|l2)eam TE
hétqz  NTE ’
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where, in dZ,,/dz, Z,., is considered as a function of z defined by r = R + bz.
Recalling that ¢, R = n,, we get for the shunt impedance per unit harmonic (in mks
units),
4 SZ . — 24 Zn 2
w 4DQ (Zk 1) R | a,|I‘l§$Iam ™ \
Zsn Ta h o (4.26)
= ~ 2 .
" 47TZ()Q& R ’dzn“/dm beam TE
ni  hb NTIE '

As an illustration for the SCC, using b = h/2 = 1.5 ¢m and wall conductivity
(copper at 4°K) 0 = 1.8 x 10° (dm)~1, the ’s and Z,,/n for the lowest TM and TE
modes at ~ 1 TeV and ~ 20 TeV are listed in Table III. Aside from the field form
factors which are the last factors in the Zy, formulas of Eq. (4.26), Za./n ~ n~7/? and
Q ~ nt/?.

1 TeV 20 TeV

TE ™ TE TM

g 2.33 x 10° 5.39 x 10° 1.40 x 10° 2.57 x 107

fa 8.42 x 10° GHz | 1.95 x 10* GHz | 5.05 x 10° GHz | 9.28 x 10° GHz

Q. 2.97 x 10° 5.58 x 10° 3.25 x 10° 3.85 x 10°
Zs

nh 745x 1075 | 830x10~7Q | 836 x10°* ) | 4.86x 10~
Zeh 5841077 Q | 802x10°*Q | 3.59%x10°1 Q) | 3.24 x 107! Q
7 leff

Table III: Impedances and positions of the lowest TE and TM modes

V. EFFECTIVE IMPEDANCE

We have seen that a particle beam revolving along an orbit of a certain radius R
will excite a series of TM and TE, resonances centered at harmonics n" and n}”. For

16



particles traveling at a slightly different radius R + AR, another series of resonances
will be excited at slightly different harmonics. We want to compute the AR which
will excite the resonance at the next harmonic, i.e., n = ny + 1 where the superseript
TM or TE has been suppressed.

We need the beam position R as an implicit function of the particle velocity 8
and resonant harmonic n;. This can be obtained by rewriting Eq. (3.21) as

R+f R¢}
R 2n?,

-2/3

= 1 + ainik + s (5.1)

where a; are related to the zeroes of the Airy function or its derivative,

2-1/3y, ™
a; = (52)
273, TE
Differentiating Eq. (5.1), one obtains
w , BENAR R (2 55 R
i — ZantP k) 5.3
(C“p " nk ) R R B\37# * n (5:3)

where 7, is the frequency dispersion and a, is the momentum compaction. The SSC
main ring will be operated well above transition; therefore n, & «,. Keeping only the
lowest-order terms, Eq. (5.3) can be simplified to

2/b R
ARE§C—+ fq, (5.4)

ik Tk

where b is the half width of the beam pipe. For the lowest TE mode which occurs at
~ 20 TeV, nif = 1.40 x 10°. Taking b = 1.5 cm, we get

AR=132x10""m, (5.5)

which the radial offset of the particle beam to excite the lowest resonance at the next
harmonic. If we use the simplified Faltens-Laslett’s formula of Eq. (3.23) instead, we
will obtain only the first term in Eq. (5.4).

The SSC main ring is designed to have a longitudinal momentum spread of Ap/p ~
107 to avoid transverse instability. It has a frequency dispersion of %, = 0.000233.
Therefore the transverse half beam size is R, Ap/p ~ 2.9%107* m. From the designed
normalized transverse emittance ¢, = 1.0x107%r m-rad, we get a transverse half beam
size of 4.5 x 107* m if an average beta-function of 200 m is assumed. Thus, radially
across the beam of radius ~ 0.4 mm, a total of

beam size
N=—"—""_"-8, 7 .
AR 6.1 x 10 (5.6)
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series of resonances can be excited. In other words, for a given ik of either the TE or
TM mode, the resonances cover a range of harmonics of width ~ 10%,
We have shown in Section [V.1 that the lowest resonance has a FWHM of
TE _ i
Any " = —%= ~ 430 , (5.7)
11
where the more accurate Q7F in Table III has been used. This implies that each
particle beam of a definite radius in the SSC can excite ~ 430 lowest TE resonances.
In other words, the effective impedance per harmonic of the a-th resonance seen by
the beam should be Zgy/n multiplied by the resonance width n,/Q,; or

~ () (E—) _ I (5.8)
eff n Qa Qa
Here we have violated the condition that the resonances are far apart or isolated.
Therefore, Eq. (5.8) may not be correct at all. However, it should give us a correct
estimate. The results are tabulated in the last row of Table III. We see that for the
lowest resonance |Z/n| g ~ 0.36Q which is not too small. However, recalling that the
SSC bunch has a rms length of 7 cm, the bunch spectrum extends to a rms harmonic of
only 1.89%10°, whereas the resonance is at nIF = 2.33x10°. Therefore this impedance
should have negligible effect on bunch-mode stability. The effective impedance of this
lowest mode, being a broad band of harmonic width ~ 6 x 107 much bigger than
the spread of the bunch spectral harmonie, can drive a fast microwave growth.? But
there is no alarm because the designed spread in momentum Ap/p ~ 10™* warrants
the Landau damping® of the growth driven by an impedance per unit harmonic of
15 © which is much larger than what we have here. The effective impedances of other
higher modes are listed in Table IIL

Next let us consider moving the beam away from the center of the beam pipe. Let

the fractional displacement outward be A. If the beam is at the inner edge of the
beam pipe, A = —1, the form factor, which is defined as the last factor in Eq. (4.26),
vanishes because the radial wavefunction Z(gr) or Z'(gr) is zero there. As the beam
is moved outward keeping the linear velocity constant, the form factor increases and
so does the resonant harmonic because the allowable space for the field becomes less -
and less. Due to criterion {1.1), the allowable space vanishes and there is no resonance
possible when A reaches

Zsh

T

R
2+2h
At this point the resonant harmonic reaches infinity and the form factor drops to zero.
Thus, the effective impedance given by Eq. (4.26) rises from zero at the inner edge

Ap=1-

(5.9)
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of the pipe, attains a maximum, and drops to zero at A, which is 0.56 and 0.9989
when v = 1000 and 20000 respectively. The results are plotted in Fig. 5. We see that
when v is not too big, for example ~ 1000, the impedance can be reduced by pushing
the beam outward from the center of the pipe so that the region available for wave
propagation is reduced. On the other hand, when ~ is extremely large, for example
~ 20000, the impedance can be reduced by pushing the beam inward so that the form
factor or the interaction between the beam and the resonant wave becomes smaller.

VI. APPLICATIONS TO THE SSC BOOSTERS AND THE TEVATRON
VI.1 The SSC injectors

The injection system of the SSC consists of three boosters: the low energy booster
(LEB), the medium energy booster (MEB), and the high energy booster (HEB). Some
specifications of these-booster rings are listed in Table IV.

LEB MEB HEB

Ring radius 39.73 m | 302.52 m | 954.93
Beam pipe radius | 10 cm 10em | 6.5 cm
v (injection) 1.632 8.585 106.6
v (extraction) 8.585 106.6 1065

Table IV: Sizes and injection and extraction v’s of the SSC injectors

According to criterion {1.1), in order to have toroidal resonances, the minimum
+’s required are 14.1, 38.9, and 85.7 respectively, where we have assumed that the
beam is at the center of the beam pipe. Therefore, we expect no such resonances will
occur in the LEB. In Table V, we list the lowest resonances (TE modes) for the MEB
and HEB at extraction energies, where the impedances are largest. The conductivity
of stainless steel, o = 1.37 (2-m)~! is assumed.

The MEB has a bunch length of 0.14 m corresponding to an rms harmonic spectral
spread of 2.1 x 10° which is about 150 times less than the harmonic of the lowest
toroidal resonance. The limit for mode-colliding instability® is quite high, | Tm Z/n
73 Q. The fast microwave limit® is Z/n ~ 13 . A rms bunch area of 0.00187 eV-sec,

~
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MEB HEB

Tig 3.17 x 10° 3.03 x 10°

fa 5.00 x 10 GHz | 1.51 x 102 GHz

Qa 5.48 x 10* 6.70 x 10%
Zs

nh 0.769 Q 0.0609 £
s 4.45 Q 2.75
T leff

Table V: Impedances and positions of the lowest modes for the MEB and HEB .

a rms energy spread of 3.8 x 107°, and a bunch intensity of 2 x 10'° particles have
been assumed. In any case, no worry of instability is necessary.

For the HEB, the limits® for mode-colliding and fast microwave instabilities are
| Zm Z/n| ~ 1.89 @ and Z/n ~ 0.33  respectively. A rms bunch area of 0.00187% eV-
sec, a rms energy spread of 1.3 x 107%, and a bunch intensity of 2 x 10'° particles
have been assumed. The HEB has a bunch length of 0.04 m, corresponding to a
rms harmoniec spectral spread of 2.3 x 10* which is about 130 times less than the
harmonic of the lowest toroidal resonance. Thus, mode-colliding stability may be safe
but microwave growth is not. At the very end of the cycle, the bunch area is blown
up to 0.0357 eV-sec. The stability limits will be increased by ~ 86 times and the
bunch will become very stable. However, we think that it is necessary to increase the
bunch area in the whole acceleration cycle to safeguard stability.

The HEB is superconducting. Let us consider for fun if the beam pipe were coated
with a layer of copper in the same way as the main ring. The wall conductivity will
become o = 1.8 x 10° (Q-m)~! which is 1310 times bigger. In the last column of
Table V, @), becomes 2.43 x 10° and Z,/n becomes 2.21 (. We see that, unlike
the SSC main ring, due to the much larger ratio of beam-pipe radius to ring radius,
the resonance observed here (and for higher modes also) is very narrow indeed. The
spread in harmonics is only ~ 1.25. The criterion for fast microwave stability driven

by narrow resonances is,”

Zon  HnlE/e (@) |

0 < L, \E (6.1)
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where 3 is the frequency dispersion, og/E is the rms energy spread. Note that the
everage bunch current I, has been used instead and Zgy,/@ is just the effective Z/n
defined in Eq. (5.8). Taking n = 0.002772, og/E = 1.3 x 107°, we obtain the limit
Zan/ € = 11000 Q.

V1.2 The TEVATRON

The TEVATRON is very similar to the HEB of the SCC both in size and energy.
The ring radius is 1 km, the beam pipe radius 3.1 cm, and the injection and extraction
energies are 150 GeV and 1 TeV respectively (we take v = 150 and 1000 for simplicity).
The lowest toroidal resonant modes are listed in Table VI. A wall conductivity of
o =1.37 x 10° (£2-m)~"! is assumed.

150 GeV 1 TeV

TE ™ TE ™

Ng 2.52 x 107 6.78 x 107 9.92 x 10° 1.83 % 107

Fa 1.20 x 10° GHz | 3.24 x 10° GHz | 4.73 x 102 GHz | 8.73 x 10?2 GHz

. 4.80 x 104 1.30 x 10° 5.63 x 10* 6.74 x 10*
Zesi -5 - —-10 -2 -
- 441 x 107> €2 | 9.65 x 10 Q| 1.04x107%2 0 570 x 1072 Q
Zsh —2 -7
231 x10~* Q 505 x 107" 1.83 Q 1.55 Q2
T leff

Table VI: Impedances and positions of the lowest TE and TM toroidal resonant modes
for the TEVATRON

The colliding mode of the TEVATRON is designed to store proton and antiproton
bunches of intensity ~ 1 x 10! particles per bunch, rms bunch length 40 cm, rms
energy spread of 1.2 x 107*. Thus, the bunches are stable against fast microwave
growth even if the impedance per harmonic is Z/n ~ 53 ). The bunch spectrum has
a rms spread of 2500 harmonics which is three to four orders of magnitude below the
lowest toroidal resonant harmonic. Thus, these toroidal resonances should not have
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any effects on the bunch stability.
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Fig. 3. Plots of the azimuthal electric fileld Z(x) across the beam pipe

for the lowest resonance,

On the horizontal axes, x = -1, 0, 1

refer to the inner edge, center, outer edge of the beam pipe.

The beam is at the pipe center x = 0.

arbitrary.
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